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ABSTRACT 

Recent papers by Rogers (1986) and Thompson et al. (1987) suggest 

fitting curves to annual age-specific fertility rates, forecasting the 

parameters of the curves using time series techniques, and then using 

the forecasted curves to generate forecasts of future age-specific 

fertility rates. This approach reduces the dimensionality of the 

forecasting problem, but the error in the fitted curves is not 

negligible. We present an approach based on a principal components 

approximation to the rates that avoids this problem to a large extent, 

while still reducing dimensionality. This approach is compared with 

direct*univariate modeling of all the age-specific rates, and with the 

curve fitting approaches. 



1. INTRODUCTION 

Demographers traditionally have relied on the cohort-component 

method for calculating fertility projections; multiplying projected 

age-specific birth rates by the projected population of women in each 

age group to calculate a projected total number of births. Time 

series methods can also be used to do fertility projections. However, 

direct univariate or multivariate modeling of age-specific fertility 

rates requires working with about 36 time series, one each for women 

of ages between 14 and 49. (The age-specific fertility rate (denoted 
. 

by fkt in section 2) is defined as the number of births divided by the 

number-of women of age k in year t.) The age-specific fertility rates 

for any given year nearly follow the same smooth pattern, as displayed 

in Figure 1 of the Appendix (the relative fertility rates g kt 

discussed in section 2 are displayed here. They are the fktts scaled 

to sum to one.) Since they follow a similar pattern each year, one 

might consider approximating the rates for each time point by a 

function involving a few parameters. "A few" means considerably less 

than 36, and hopefully a manageable number for multivariate time 

series modeling. Forecasts are obtained for these parameters, and 

then the forecasts of these parameters are translated into forecasts 

of the age-specific fertility rates. 

The use of several parametric curves to approximate the 

age-specific rates has been discussed recently in the statistical 

literature. Rogers (1986) suggests using a double exponential curve, 

while Thompson et al. (1987) use a Gamma curve. The success of their 
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approaches depends on how close their respective curves approximate 

the age-specific rates. Figure 2 in the Appendix displays the Gamma 

and double exponential curve approximations to the rates for 1980. 

Thompson et al. fit their curve to the relative fertility rates gkt, 

while the double exponential curve Rogers suggests includes a scale 

factor and is fit directly to the age-specific rates. (Revised data 

(as of 1987) for 1980-1984 is used everywhere in this paper except in 

the fitting of the double exponential curve, which was done before the 

revised data became available. For the purposes of this comparison 

the revisions are slight.) It is clear from Figure 2 that there is 

considerable error in the approximations for some ages, especially the 
* 

ages with high fertility. The pattern of the errors across ages 

changes slowly over the time span of the data, but significant errors 

are present for almost all the years. Thus, Thompson et al. (1987) 

use a "bias adjustment II to correct for lack of fit at some ages when 

the Gamma curve is used. 

Our approach using principal components is similar in philosophy 

to fitting a parametric curve in that we reduce the dimensionality of 

the forecasting problem. However, we attempt to reduce the 

approximation error that occurs when either the double exponential or 

Gamma curve is used to approximate age-specific fertility rates. The 

principal components approach allows the data itself to select a 

linear function that accurately represents the curve of age-specific 

rates. In that respect, our approach is more flexible than one using 

a specific curve to approximate the rates. 

In section 2 of this paper we introduce some notation and 

discuss the data used. In section 3 we discuss the approach using 
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principal components. Section 4 discusses selection of the number of 

principal components, and section 5 presents forecasting results from 

a multivariate model using principal components. 

2. DESCRIPTION OF DATA 

Let 

. 

fkt = fertility rate for women of age k in year t 

* k = 14, . . . ,49 (see remark below) 

TFRt = total fertility rate in year t 

= "k fkt 

'kt = relative fertility rate for women of age k in year t 

= fkt / TFRt 

Annual age-specific fertility data for white women from 1921-1984 were 

used in this study (Heuser (1976), Bureau of the Census (1984), and 

more recent unpublished data.) Following Thompson et al. (1987) we 

analyze and forecast the relative rates (gkt). Logged relative rates 

( ln(gkt) ) were used to insure that forecast intervals would not drop 

below zero at ages with low fertility. LTFRt = Ln(TFRt) was also 

used. Forecasts of fkt are obtained by modeling and forecasting TFRt, 

and multiplying forecasts of gkt by the TFR forecasts. Because of 

values rounded to zero for f kt in some years for some ages above 46, 

our analysis was cut off at age 46. Thus, 33 age groups were used. 
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The fertility for women over age 46 is so small, especially in recent 

years, that it can effectively be ignored in fertility projections. 

3. PRINCIPAL COMPONENTS APPROACH 

Suppose we have a given set of constants h 
W 

for each k and j = 

1, . . . , J, where J is the number of linear functions of the data we 

use to approximate 7 
,t' 

where r = 
,t ln(glqltL l , ln(g46 ,& Let A 

I 

=- {hkj } . A has dimension 33 x J. Our problem is to find constants 

(P1t l ** PJ,)’ = ft to 

2 2 

min Z 

!?t k 
rkt - (&%k + l l * + PJ,‘,) 1 = min II 2 - Yt II 

The solution is attained at tt = (A'A)-' A'zt. There is a 

normalization problem here, in that for any nonsingular linear 

transformation of A one obtains the same minimum for the sum of 

squares by appropriately transforming et. We can thus restrict A, and 

the most natural restriction is to require the columns of A = 

[ 
h -1 l . . ;J 1 to be orthonormal. Under this restriction A'A = I, and 

the minimum of the sum of squares occurs at Et = A'zt, with minimum 

value 
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II II 
2 

It - AA':t = zt' (I - AA') (I - AAr) Zt = 1t, (I _ AA,) it. 

The remaining problem is to choose the h 
kj Is. 

Since we have data 

rt for multiple time points t, and we want our apporoximation to be 

good at all of these time points (and at future time points as well), 

this suggests using A = (A .) 
k-J 

that solves the following optimization 

problem. Note that different Et are chosen for each time point t, but 

A remains constant over time: 
. 

min 
A - A!?t II = min 

A 1 :t' [ ' - AA' ] zt 
t 

=min tr I-AA' 
A [ 1 1 It 2’ t 

= min tr 
[ 
I - AA' 1 S A 

= min tr(W - tr(A'SA) 
A 1 

J 

= min 
A 

t$(') - 1 Pj (A'S') 

j=l 1 
S is the sum of squares and cross products matrix of the data (z-r), 

tr(S) is the trace of S, and pi(A) 2 pa(A) 1 l ** > pJ(A) are the 

ordered eigenvalues of any real, symmetric matrix A. The solution is 

attained bY choosing A = [hl . . . cJ] such that tl, . . . ,tJ are the 

eigenvectors of S corresponding to v,(S), . . . , vJ(S), in which case 

the minimum value obtained is v~+~(S) + l ** + Vet. Note that since 
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h 

Et 
= A':, , p^. 

= 2" 
.th 

It 
,t is the I) principal component score for the 

tth observation. 

One can also consider using weighted least squares. The problem 

then becomes 

min 
A 

min 1 
!?t t 

(:t - A'Et)' Wt (It - A'!&) = 

m;n 1 It' [ Wt - WtA(A'wtA)-l A'wt ] zt 
t 

for soze given symmetric positive definite weighting matrices Wt. 

While the above problem could be solved by numerical methods with 

suitable constraints imposed on A, it simplifies greatly if one can 

assume W t = W for all t. In this case we can require A'WA = I, and 

then define 

H = W112A 
,ht = w1'2 Tt 

so that H is the matrix of eigenvectors of 

1 ,ht_ht’= w 1 l/2 Zt, w l/2 3) I 
t t 

and 6 
,t 

= H' h 
,t- 

Our analysis was performed using weighted least 

squares with W a diagonal matrix with elements w., where w. = 16 for 
1 1 

ages 18 thru 32, and w. = 1 1 for ages 14 thru 17 and 33 thru 46. This 
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is the same weighting scheme used by Thompson et al. (1987), and 

places more importance in terms of fit on the ages with high 

fertility. 

4. HOW MANY PRINCIPAL COMPONENTS TO USE? 

Using graphs of the age-specific rates by year and fits obtained 

from using increasing numbers of principal components, we found the 

f:ts for J 2 4 or 5 difficult to distinguish from the data when 

plotte; across age. This is illustrated for 1980 in Figure 3 of the 

Appendix. One can see a small improvement in the fit as the number of 

principal components is increased from 4 to 8. The principal 

components approach appears not to suffer from the more serious 

approximation problems that occur when the double exponential or Gamma 

curves are used to approximate the data. 

The selection of the number of principal components is not so 

clear when the fits are studied for individual ages. Figures 4-6 in 

the Appendix illustrate this for age 25. Four principal components 

may not be enough, and significant improvement in the fit is seen as 

the number of principal components is increased to 8 or 12. A measure 

to judge the fit across years for individual ages was computed as: 

I 

2 1 
'kJ = 58 I[ Ln hkt) - Ln6Jkt) I2 , J = 1, . . . , 12 

t 

where k is the age group (14, . . . ,46) and the f,,, are the 
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approximations to the -T kt when J is the number of principal components 

used to obtain the fit. 8, denotes the war years 1942-1947 were 

omitted from the calculation. Table 1 in the Appendix lists (skJ} for 

J = 4, 8, and 12. Since the approximation is to be used in 

forecasting, the amount of approximation error at any age k for any 

given number of components J should be interpreted in relation to the 

magnitude of the forecast error for age k that would be likely to 

otherwise result. To do this, the {skJ> were compared to the residual 

standard error obtained from simple univariate time series models of 

the rkt for each k. The model notation follows that of Box and 

Jenkins (1970). 
* 

Substantial reduction in the (skJ) occurs as J is 

increased. However, the number of principal components necessary to 

achieve a suitable approximation to the data remains unclear. 

5. TIME SERIES MODELING OF THE PRINCIPAL COMPONENTS AND TFR 

5.1 Univariate and Multivariate Models 

For illustration, pit, . . . ,p,, and ln(TFRt) were modeled using 

univariate and multivariate time series techniques (Tiao and Box, 

1981). Let LTFRt = Ln(TFRt). Inspection of the series indicated 

first differencing was necessary for all five series. For all ages, 

the data showed unusual behavior occuring between 1942 and 1947, due 

to the effect of World War II on fertility. The effect was removed by 

including indicator variables for 1942-1947 in the univariate models 
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for p,, . . . , P,, and LTFR. The following univariate models were 

identified: 

SERIES ARIMA MODEL 

LTFR (3 1 0) 

p1 (3 1 0) 

p2 (2 1 0) 

p3 (1 1 0) 

p4 (1 1 0) 

Outliers were identified in the series LTFR, p,, /3,, and /3,, but their . 

effects were not adjusted for because of the difficulty of doing so in 

a multrvariate context. This could be done as an enhancement to the 

model. The effects of the war years 1942-1947 were removed prior to 

the multivariate modeling. The univariate models were then used to 

initially identify a multivariate (3 1 0) model with strong 

restrictions on the second and third lag autoregressive matrices. 

Initially, the lag one autoregressive matrix was unrestricted, but a 

number of its elements corresponding to insignificant parameter 

estimates were set to zero. 

The following multivariate (3 1 0) model was estimated: 

i, = 

LTFR 

p1 

p2 

p3 

p4 

LTFR 
p1 p2 p3 p4 

(E) 0 0 0 0 

0 .320 0 0 0 

(.111) 

-1.195 -1.038 .554 0 0 

(.254) (.354) t-091 

0 0 .237 .540 0 

(.073) (.089) 

-1.183 0 0 -.186 .304 

(.346) (.094) (.141) 
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G2(3,3) = .244 G3(1,1) = .205 

(.088) (.095) 

The standard errors for the parameters are in parentheses and italics, 

below the estimate. All other elements of the G2 and $ 3 matrices were 

constrained to zero. 

5\2 Forecasts 

Le't LT$Rn+L denote a forecast of LTFR for year n+C using data 

through year n, and similarly for il n+L, . . . , F4 n+L. The 
I I 

multivariate model can be used to obtain forecasts for LT$R n+C' $n+L = 

(p^ 
h 

l,n+L ... P4,n+,)' and the principal components approximation can be 

used to convert these into forecasts of -r 
,n+C' and then of ln(_fn+c) as 

follows: 

%,l l *' %,4 

. . 

. . 

. . 

h 
l ** 33'1 

h 
33'4 

. 

* 

p^ l,n+C 

p^ 2,n+C 

p^ 3,n+C 

I+ 4,n+C 

= 

'I 
[ 2 A ] l [ LTiRn+L J = LT$R~+~ l J, + Aen+L = 

,.,n+L 

LT;Rn+L 
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LT$Rn+L l 1 + h Zn+L = ln(Z 14,n+C) 
. 
. 
. 

ln(Z 46,n+L) 

where 1 = (1 1 . . . 1)' and (h l,j . . . h33,j)f = ~j is the 

.th 
7 eigenvector A = 

?4 l 
I 

The dk n+C) 
can then be 

I 

exponentiated to produce forecasts of fk n+C. 
I 

Let Vc denote the 5 x 5 matrix of variances and covariances of 

the forecast errors LT$Rn+L - LTFRn+Lt i& - P ' ,n+C 1 ', and let RC 
similal;ly denote the 33 x 33 variance covariance matrix of the 

forecast errors 

ln(Z 
14,n+L) - 1n(f14,n+L) .*' ln('46,n+L) - 1n(f46 n+C I > I'. 

Ignoring the error in the principal components approximation of r 
,n+C' 

We use an estimate of Vc from the fitted multivariate model to 

calculate RL. Assuming approximate normality of ln(_fn+s), we can use 

the standard errors from RC to calculate forecast intervals for 

ln(f k,n+L)' The limits of these intervals can then be exponentiated 

to give forecast intervals for fk n+C. 
I 

To illustrate, the multivariate model was estimated using data 

through 1980, and forecasts produced for 1981-1990 for LTFR, p,, P,, 

P3' and j3,. These forecasts were then used to obtain forecasts of the 
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age-specific rates fk n+C for 1981-1990. Approximate 67% forecast 
I 

intervals (one standard error for each ln(fk n+C) ) were also 
I 

produced. 

Figures 7-13 in the Appendix are graphs of the data, forecasts, 

and one standard error limits for the forecasts for TFR = e LTFR , and 

the fertility rates fk for women of age 15, 20, 25, 30, 35, and 40. 

The 1980 forecast origin turned out to be poor for forecasting due to 

shifts in fertility just after 1980 at some ages. These could not be 

captured by the forecasts. Thus, for ages 20 and 25, the recent 

d&line in rates for 1981-1984 could not be predicted by our model. 

For the most part, the 1981-1984 data falls within the 67% intervals. 
* 

The principal component approximation using only four components for 

age 40 was relatively poor, and this is reflected in the age 40 

forecasts. Using 8 or 12 components will improve the fit at advanced 

ages, but if the primary objective is to forecast births, this may not 

be necessary since the advanced ages contribute so little to total 

births. 

Figures 14-17 display the 1981-1984 data, forecasted fertility 

rates fkt and 67% forecast limits across ages. The data is generally 

within the forecast limits. Narrow forecast limits for ages with low 

fertility are also apparent. 

6. CONCLUSION 

Forecasting age-specific fertility rates using a principal 

components approach appears to reduce the approximation error that 
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occurs when the rates are approximated using either a Gamma or double 

exponential curve. The approach appears to have potential for 

producing reasonable forecasts and forecast intervals for the 

age-specific rates using a small number of components. We are further 

studying the number of components necessary for a suitable 

approximation to the rates, the effect of the approximation error when 

principal components are used, and are investigating alternative 

multivariate models. 



14 

7. REFERENCES 

Box, G.E.P. and G.M. Jenkins (1970)' Time Series Analysis: 
Forecastinq and Control, San Francisco: Holden Day. 

Bureau of the Census (1984)' "Projections of the Population of the 
United States by Age, Sex, and Race: 1983 to 2080", Current 
Population Reports, Series P-25, No. 952, Washington, D.C.: 
U.S. Government Printing Office. 

Heuser, R.L. (1976)' "Fertility Tables for Birth Cohorts by Color: 
United States, 1917-1973,,, DHEW Publication No. HRA 76-1152. 

Rogers, A. (1986)' ,,Parameterized Multistate Population Dynamics 
and Projections,,, Journal of the American Statistical 

. Association, 81, 48-61. 

Thompson, P.A., W.R. Bell, J. Long, and R.B. Miller (1987)' 
* "Multivariate Time Series Projections of Parameterized 

Age-Specific Fertility RateslV, Ohio State University Workinq 
Paper Series WPS 87-3. 

Tiao, G.C. and G.E.P. Box (1981), "Modeling Multiple Time Series 
with ApplicationsV,, Journal of the American Statistical 
Association, 76, 802-816. 



TABLE 1 

LOGGED RELATIVE RATES 

PRINCIPAL COMPONENTS APPROXIMATION ERRORS 
(AS A PERCENTAGE OF UNIVARIATE ARIMA RESIDUAL STD. ERRORS) 

AGE skj / RSE 
k=4 

14 . 98 
15 1.28 
16 1.49 
17 1.37 
18 1.17 
19 . 90 
20 - . 64 
21 . 68 
22 . 72 
23 ,1.07 
24 1.52 
25 1.74 
26 1.45 
27 1.30 
28 . 99 
29 . 71 
30 . 44 
31 . 55 
32 . 78 
33 . 91 
34 1.03 
35 1.07 
36 1.09 
37 1.28 
38 1.04 
39 1.05 
40 . 90 
41 . 92 
42 . 87 
43 . 56 
44 . 64 
45 . 67 

skj / RSE 
k=8 

skj / RSE 
k=12 

. 32 . 15 (2 1 0) 0.0544 

. 33 . 30 (1 1 0) 0.0366 

. 36 . 29 (1 1 0) 0.0298 

. 32 . 19 (1 1 0) 0.0254 

. 45 . 09 (1 1 0) 0.0184 

. 23 . 19 (2 1 0) 0.0138 

. 35 . 14 (2 1 0) 0.0132 

. 27 . 16 (1 1 0) 0.0124 

. 27 . 21 (1 1 0) 0.0121 

. 56 . 20 (1 1 0) 0.0097 

. 57 . 35 (1 1 0) 0.0075 

. 53 . 34 (2 1 0) 0.0077 

. 53 . 27 (1 1 0) 0.0088 

. 39 . 35 (1 1 0) 0.0090 

. 40 . 26 (1 1 0) 0.0098 

. 48 . 18 (1 1 0) 0.0110 

. 31 . 24 (1 1 0) 0.0126 

. 20 . 17 (2 1 0) 0.0140 

. 36 . 15 (1 1 0) 0.0141 

. 44 . 34 (2 1 0) 0.0174 

. 58 . 37 (1 1 0) 0.0176 

. 65 . 39 (1 1 0) 0.0179 

. 60 . 35 (1 1 0) 0.0197 

. 67 . 44 (1 1 0) 0.0195 

. 47 . 32 (2 1 0) 0.0236 

. 50 . 34 (1 1 0) 0.0246 

. 51 . 30 (2 1 0) 0.0261 

. 51 . 28 (1 1 0) 0.0322 

. 46 . 31 (2 1 0) 0.0297 

. 36 . 20 (4 1 0) 0.0633 

. 41 . 14 (3 1 0) 0.0666 

. 23 . 02 (1 1 0) 0.0993 

UNIVARIATE RESIDUAL 
MODEL STD. ERROR 
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